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A systems theory approach to the feedback
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A systems theory framework is presented for the linear stabilization of two-dimen-
sional laminar plane Poiseuille flow. The governing linearized Navier–Stokes equations
are converted to control-theoretic models using a numerical discretization scheme.
Fluid system poles, which are closely related to Orr–Sommerfeld eigenvalues, and
fluid system zeros are computed using the control-theoretic models. It is shown
that the location of system zeros, in addition to the well-studied system eigenvalues,
are important in linear stability control. The location of system zeros determines the
effect of feedback control on both stable and unstable eigenvalues. In addition, system
zeros can be used to determine sensor locations that lead to simple feedback control
schemes. Feedback controllers are designed that make a new fluid–actuator–sensor–
controller system linearly stable. Feedback control is shown to be robust to a wide
range of Reynolds numbers. The systems theory concepts of modal controllability and
observability are used to show that feedback control can lead to short periods of high-
amplitude transients that are unseen at the output. These transients may invalidate the
linear model, stimulate nonlinear effects, and/or form a path of ‘bypass’ transition in a
controlled system. Numerical simulations are presented to validate the stabilization of
both single-wavenumber and multiple-wavenumber instabilities. Finally, it is shown
that a controller designed upon linear theory also has a strong stabilizing effect on
two-dimensional finite-amplitude disturbances. As a result, secondary instabilities due
to infinitesimal three-dimensional disturbances in the presence of a finite-amplitude
two-dimensional disturbance cease to exist.

1. Introduction
A basic problem in fluid dynamics is the theoretical understanding of how insta-

bility in laminar shear flow leads to transition to turbulence. Since laminar flow
is preferred in many applications, the suppression of fluid instabilities to maintain
laminar flow would be very useful. Towards this goal, active boundary layer control
of instability has been proposed. The nonlinear aspects of the transition process are
still not clearly known. It has been shown (Orszag & Patera 1983) that some shear
flows may sustain two-dimensional finite-amplitude instabilities that cause infinites-
imal three-dimensional disturbances to be highly unstable. This two-dimensional
primary instability/three-dimensional secondary instability process may be one non-
linear mechanism that leads to transition. Conversely, the behaviour of infinitesimal
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(linear) disturbances in laminar shear flow is well understood (Orr 1907; Sommerfeld
1908; Drazin & Reid 1981). Therefore, linear analysis provides a natural starting
point to begin to develop active control schemes that may eventually lead to full
transition control. It is the purpose of this paper to develop feedback controllers
based on linear theory that stabilize two-dimensional plane Poiseuille flow to in-
finitesimal disturbances. In addition, it will be shown that a controller designed
upon linear theory has a strong stabilizing effect on two-dimensional finite-amplitude
instabilities. As a result, secondary three-dimensional instabilities as described in
Orszag & Patera (1983) cease to exist in such a system.

Most prior work in the area of laminar flow linear instability suppression has
concentrated on the wave superposition approach. A nice survey of past work is
given in Joslin, Erlebacher & Hussaini (1994). The basic idea is that boundary layer
instabilities appear as a combination of many sinusoidally growing waves of certain
frequencies, phases, and amplitudes. If these wave parameters are known, or if they
can be determined, a second wave may be stimulated in the flow that is exactly out
of phase with the instability wave. In this way, the two waves may destructively
interfere and flow may be stabilized. Disturbance of the flow field to cause a
wave motion to appear has been experimentally demonstrated using several methods
such as vibrating ribbons (Schubauer & Skramstad 1947), vibrating wires (Milling
1981), and heating elements (Nosenchuck 1982). In addition, several authors have
numerically obtained wave superposition results based on Navier–Stokes simulations
(Beringen 1984; Metcalfe et al. 1986). Most of the results, however, report incomplete
destruction of instability waves. Joslin et al. (1994) explain that wave cancellation
is very sensitive to the wave parameters and postulate that incomplete destruction
reported in past studies was due to improper phase or amplitude properties of the
cancelling wave.

In addition, Bower, Kegelman & Pal (1987) considered the Orr–Sommerfeld equa-
tion in designing an input to channel flow that may counteract the effects of a
disturbance that excites instabilities. They showed that if an oscillating flat pulse
function at the lower boundary of a channel excited inherent instabilities, a second
oscillating flat pulse function could be constructed downstream that negated excite-
ment of the instabilities. Much like the wave superposition approach, their aim was
not to stabilize the underlying dynamics of the problem, but rather to ‘cancel’ the
effects of a specific disturbance.

Unlike past work, our aim is to use systems theory to construct a combination fluid–
actuator–sensor–controller system that is inherently stable. In essence, the approach
changes the philosophy of the problem from thinking about how inputs can mitigate
an inherently unstable system to thinking about how sensors and actuators can be
added to form an entirely new stable system. Recently, mathematical control systems
theory has begun to be applied to fluid systems (Burns & Ou 1994; Gunzburger,
Hou & Suobodny 1992; Choi, Moin & Kim 1993). A control theory approach for
laminar flow linear instability suppression will be shown to have several advantages
over the traditional wave cancellation approach. It will eliminate the need to explicitly
measure phase and frequency of instabilities. Also, it will provide a framework to
select sensor locations in order to have the least complex controller. Further, feedback
control will be shown to be extremely robust to changing Reynolds numbers given
proper sensor location. In addition, linear feedback controllers will be shown to have
a strong stabilizing effect on two-dimensional finite-amplitude disturbances.

This paper is organized as follows. In §2, we formulate the linear channel flow
problem using the linearized Navier–Stokes equations. Boundary input in the form



Systems theory approach to feedback stabilization of plane Poiseuille flow 159

of blowing/suction and boundary output in terms of shear are represented within the
equations. In §3, we introduce the concepts of zeros and poles of a system, as well as
control-theoretic models. The governing partial-differential equation for the system
is converted into a set of first-order, ordinary differential equations via a Galerkin
method. These first-order, ordinary differential equations are then converted into a
control-theoretic model. Section 4 describes the infinite-dimensional nature of the
channel flow system and how it affects the selection of actuation. Section 5 describes
the numerical model and the verification of the calculated poles and zeros. Section 6
introduces feedback control design. It is shown that judicious sensor placement, based
on zero locations, can lead to simple control schemes. Furthermore, the control system
is extremely robust to change in Reynolds number. Section 7 explores unobservable
modal reinforcement as a possible path of ‘bypass’ transition in a controlled system.
It then shows how a particular control model, called the modal-canonical state
space model, may be used to assess observability of modal reinforcement. Section 8
demonstrates multiple-wavenumber instability control. Section 9 demonstrates that a
linear controller has a strong stabilizing effect on two-dimensional, finite-amplitude
instabilities. As a result, secondary three-dimensional instabilities as described by
Orszag & Patera (1983) cease to exist. Finally, §10 outlines conclusions.

2. Problem formulation
2.1. Dynamic equations

We consider two-dimensional plane Poiseuille flow between two parallel stationary
plates. Let the channel be of finite length and finite height, with the centreline at
zero. The flow in the channel is described by the unsteady nonlinear incompressible
Navier–Stokes equations. In order to study the linear stability of the system, we
follow the standard procedure. Consider small perturbations in the velocities of
û(x, y, t) in the horizontal direction, v̂(x, y, t) in the vertical direction, and p̂(x, y, t) in
the pressure field. Let the primary flow be represented by U(y) with Uc being the
centreline velocity. The linearized incompressible Navier–Stokes equations may be
formed by substituting the primary flow and small perturbations into the nonlinear
incompressible Navier–Stokes equations and disregarding the second-order terms
involving the perturbations,

∂û(x, y, t)

∂t
+U(y)

∂û(x, y, t)

∂x
+

dU(y)

dy
v̂(x, y, t) = −∂p̂(x, y, t)

∂x
+

1

Re
∇2û(x, y, t), (2.1)

∂v̂(x, y, t)

∂t
+U(y)

∂v̂(x, y, t)

∂x
= −∂p̂(x, y, t)

∂y
+

1

Re
∇2v̂(x, y, t), (2.2)

∂û(x, y, t)

∂x
+
∂v̂(x, y, t)

∂y
= 0, (2.3)

where the flow variables are non-dimensionalized by the channel half-height, H , and
centreline velocity, Uc. Re is the Reynolds number defined as (UcH/ν) where ν is the
kinematic viscosity. By introducing a ‘stream function’, ψ(x, y, t),

û(x, y, t)
4
=
∂ψ(x, y, t)

∂y
(2.4)

and

v̂(x, y, t)
4
= −∂ψ(x, y, t)

∂x
, (2.5)
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(2.1)–(2.3) may be combined into a single equation,

∂

∂t

∂2ψ

∂x2
+
∂

∂t

∂2ψ

∂y2
= −U(y)

∂3ψ

∂x3
−U(y)

∂

∂x

∂2ψ

∂y2
+

d2U(y)

dy2

∂ψ

∂x
+

1

Re
∇2(∇2ψ). (2.6)

Assume periodic boundary conditions in the streamwise (x) direction. For channel
flow, with rigid plates at y = −1 and y = 1, the no-slip boundary conditions become

ψ(x, y = −1, t) = 0, (2.7)

∂ψ

∂y
(x, y = −1, t) = 0, (2.8)

ψ(x, y = 1, t) = 0, (2.9)

∂ψ

∂y
(x, y = 1, t) = 0. (2.10)

With an initial condition

ψ(x, y, t = 0) = g(x, y) (2.11)

the boundary value problem is completely formed. Existence and uniqueness of solu-
tions for the linearized Navier–Stokes equations have been studied in Ladyzhenskaya
(1969), Kreiss & Lorenz (1989), and Temam (1984). Equations (2.6)–(2.11) represent
the starting point for construction of a feedback control system. These equations
neither include any control terms nor do they describe any sensing of flow field
variables.

2.2. Boundary input

We consider the case of blowing/suction at the lower wall of the channel. The bound-
ary conditions are now modified from before to include boundary input, represented
as the known separable function q(t)w(x)f(y),

ψ(x, y = −1, t) = q(t)w(x)f(y = −1), (2.12)

∂ψ

∂y
(x, y = −1, t) = q(t)w(x)

∂f(y = −1)

∂y
= 0, (2.13)

ψ(x, y = 1, t) = 0, (2.14)

∂ψ

∂y
(x, y = 1, t) = q(t)w(x)

∂f(y = 1)

∂y
= 0. (2.15)

Note that these conditions constrain the function f(y) such that

f(y = −1) 6= 0, (2.16)

∂f(y = −1)

∂y
= 0, (2.17)

f(y = 1) = 0, (2.18)

∂f(y = 1)

∂y
= 0. (2.19)

Many functions may be equally appropriate. One such function is

f(y) = 1
2
y4 + 1

4
y3 − y2 − 3

4
y + 1. (2.20)
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In order to relate boundary conditions on ψ to blowing/suction in the wall-normal
direction, we use (2.5) to relate v̂(x, y, t) and ψ(x, y, t). Then (2.12) becomes

v̂(x, y = −1, t) = −q(t)
∂w(x)

∂x
f(y = −1). (2.21)

Note that v̂(x, y, t) is related to the derivative of w(x). The homogeneous equation
(2.6) and the inhomogeneous boundary condition (2.12) can be converted into an
inhomogeneous equation with homogeneous boundary conditions by introducing

φ(x, y, t)
4
= ψ(x, y, t)− q(t)f(y)w(x). (2.22)

Then by substituting into (2.6), we obtain

∂

∂t

∂2φ

∂x2
+

∂

∂t

∂2φ

∂y2
= −U(y)

∂3φ

∂x3
−U(y)

∂

∂x

∂2φ

∂y2
+

d2U(y)

dy2

∂φ

∂x
+

1

Re

∂4φ

∂x4
+ 2

1

Re

∂2

∂x2

∂2φ

∂y2

+
1

Re

∂4φ

∂y4
− ∂q(t)

∂t

∂2w(x)

∂x2
f(y)− ∂q(t)

∂t
w(x)

∂2f(y)

∂y2
− q(t)

∂3w(x)

∂x3
U(y)f(y)

− q(t)
∂w(x)

∂x
U(y)

∂2f(y)

∂y2
+ q(t)

∂w(x)

∂x

d2U(y)

dy2
f(y) +

1

Re
q(t)

∂4w(x)

∂x4
f(y)

+ 2
1

Re
q(t)

∂2w(x)

∂x2

∂2f(y)

∂y2
+

1

Re
q(t)w(x)

∂4f(y)

∂y4
. (2.23)

The boundary conditions in terms of φ are now

φ(y = −1) = 0, (2.24)

∂φ(y = −1)

∂y
= 0, (2.25)

φ(y = 1) = 0, (2.26)

∂φ(y = 1)

∂y
= 0. (2.27)

2.3. Boundary output

We use the streamwise component of shear at a single boundary point, z(xi, y = −1, t),
as our boundary output, which is given by

z(xi, y = −1, t) =
∂û(xi, y = −1, t)

∂y
. (2.28)

By expressing û(xi, y = −1, t) in terms of the stream function (2.4),

z(xi, y = −1, t) =
∂2ψ(xi, y = −1, t)

∂y2
, (2.29)

and by observing (2.22)

z(xi, y = −1, t) =
∂2ψ(xi, y = −1, t)

∂y2
=
∂2φ(xi, y = −1, t)

∂y2
+ q(t)

∂2f(y = −1)

∂y2
w(xi).

(2.30)

3. Zeros, eigenvalues, and control-theoretic models
Linear stability analysis of (2.6) (Drazin & Reid 1981) shows that the system is

linearly unstable for a range of Reynolds numbers. The goal of this paper is to
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stabilize the system using control theory. To do this, we first transform the governing
equations into special control-theoretic models.

3.1. System transfer function

We have defined a single-input/single-output (SISO) system in the sense that only
one scalar function, q(t), defines the entire input and one scalar function, z(t), defines
the output. A common form of control model for a finite-dimensional SISO system
is the transfer function model. The transfer function, H(s), is defined as the Laplace
transform of the output, z(t), divided by the Laplace transform of the input, q(t),
where zero initial conditions are assumed. Then

H(s)
4
=
L[z(t)]

L[q(t)]
=
Z(s)

Q(s)
. (3.1)

For finite-dimensional systems, Z(s) and Q(s) take the form of polynomials in the
complex variable s. These polynomials may be factored to yield an equivalent
representation,

H(s)
4
=
Z(s)

Q(s)
=

J∏
j=1

(s− ζj)

I∏
i=1

(s− pi)
. (3.2)

In this form, p1 . . . pI are the poles of the system. The poles of any system are dependent
solely on the physics of the underlying system, independent of any particular input or
output. Unstable modes of the system appear as poles whose real part is greater than
zero. As will be seen in later sections, the poles are closely related to the eigenvalues
of the Orr–Sommerfeld equation. The values ζ1 . . . ζJ are the zeros of the system. They
are heavily dependent on which particular inputs and outputs are used on the system.
As will be seen later, the position of these zeros will dictate sensor locations and will
reveal the effect of feedback control on the eigenvalues. A graphical representation of
the transfer function can be produced by plotting the poles and zeros in the complex
s-space.

3.2. State-variable model

Much of modern control theory is based on the state-variable representation of a
dynamic system. This representation relies on the basic fact that the motion of any
finite-dimensional dynamic system may be expressed as a set of first-order ordinary
differential equations. As a simple example of a state variable model (Franklin, Powell
& Emami-Naeini 1988), Newton’s law for a constant single mass, M, moving in one
dimension, x, under a force, F(t), is

M
d2x(t)

dt2
= F(t). (3.3)

If we define one state variable as the position x1
4
= x(t) and the other state variable

as the velocity x2
4
= dx(t)/dt, (3.3) can be written as

dx1

dt
= x2, (3.4)

dx2

dt
=
F(t)

M
. (3.5)
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Furthermore, the first-order linear ordinary differential equations can be expressed
using matrix notation  dx1

dt
dx2

dt

 =

[
0 1
0 0

] [
x1

x2

]
+

[
0
1

]
F

M
(3.6)

or
dx

dt
= Ax+ Bq. (3.7)

If we take output as position, x1,

z =
[

1 0
] [ x1

x2

]
(3.8)

or

z = C · x (3.9)

The matrix A, and the vectors B and C are called the state space matrices of the
single-input, single-output (SISO) system. More specifically, the A matrix is referred
to as the dynamic matrix of the system. It can be shown that the poles of the system
are simply the eigenvalues of the A matrix. In the more general case of multiple-input,
multiple-output (MIMO) systems, B and C are matrices. For generality, we may add
another term, Dq, to the output equation to account for systems in which there is
direct feedthrough from the input to the output. Then,

z = C · x+ Dq (3.10)

In the case of no direct feedthrough, D = 0, the state space and transfer function
models are related as

H(s)
4
=
Z(s)

Q(s)
= C (sI − A)−1B. (3.11)

3.3. State-space formulation for channel system

We will convert our problem into a set of first-order ordinary differential equations
and then form a state-space model from these equations. The state-space model can
then be represented with transfer function poles and zeros. We will proceed in this
way for two reasons. First, our system lends itself to decomposition into first-order
ordinary-differential equations by use of a Galerkin method. More importantly,
however, the state-space model lends itself to extremely elegant ways to control
eigenvalues of a system in well prescribed ways. It should be noted that unlike the
single-mass example given above, the channel system requires an infinite number of
ordinary differential equations to describe its motion. This is known as an infinite-
dimensional system. As a result, any finite number of ordinary-differential equations
used in a state-space model will not completely describe the system. The difficulties
associated with such a system are taken up after a discussion of the Galerkin method
used to obtain the ordinary-differential equations.

3.3.1. First-order system

We use a standard Galerkin procedure to convert the governing partial differ-
ential equation (2.23) into a system of ordinary-differential equations. Assume an
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approximate solution of (2.23) as

φa(x, y, t)
4
=

N∑
n=−N

M∑
m=0

anm(t)Pn(x)Γm(y). (3.12)

By using Fourier functions, einα0x, for Pn(x) and basis functions constructed from
Chebyshev polynomials for Γm(y) (Joshi 1996), we obtain a first-order system. Define
inner products in the streamwise (x) and normal (y) directions respectively:

[einα0x, eimα0x]x
4
=

1

L

∫ L/2

−L/2
einα0xe−imα0xdx = δmn, α0

4
=

2π

L
, (3.13)

and

[Γm(y), Γn(y)]y
4
=

∫ 1

−1

Γn(y)Γm(y)

(1− y2)1/2
dy, (3.14)

where L is the non-dimensional length of the finite-length channel. Applying the
orthogonality of the basis functions in x, we obtain a system of first-order ordinary
differential equations:

−
M∑
m=0

∂alm(t)

∂t
l2α2

0β
0
mk +

M∑
m=0

∂alm(t)

∂t
β2
mk =

M∑
m=0

alm(t)il3α3
0β

0+
mk −

M∑
m=0

alm(t)ilα0β
2+
mk

+

M∑
m=0

alm(t)ilα0β
0−
mk +

1

Re

M∑
m=0

alm(t)l4α4
0β

0
mk − 2

1

Re

M∑
m=0

alm(t)l2α2
0β

2
mk

+
1

Re

M∑
m=0

alm(t)β4
mk +

∂q(t)

∂t
{S1

lk}+ q(t){S2
lk}, l = −N . . . N, k = 0 . . .M, (3.15)

where

S1
lk

4
= −

[
∂2w(x)

∂x2
, Pl(x)

]
x

[
v(y), Γk(y)]y − [w(x), Pl(x)

]
x

[
∂2v(y)

∂y2
, Γk(y)

]
y

(3.16)

and

S2
lk

4
= −

[
∂3w(x)

∂x3
, Pl(x)

]
x

[U(y)v(y), Γk(y)]y −
[
∂w(x)

∂x
, Pl(x)

]
x

[
U(y)

∂2v(y)

∂y2
, Γk(y)

]
y

+

[
∂w(x)

∂x
, Pl(x)

]
x

[
d2U(y)

dy2
v(y), Γk(y)

]
y

+
1

Re

[
∂4w(x)

∂x4
, Pl(x)

]
x

[v(y), Γk(y)]y

+2
1

Re

[
∂2w(x)

∂x2
, Pl(x)

]
x

[
∂2v(y)

∂y2
, Γk(y)

]
y

+
1

Re
[w(x), Pl(x)]x

[
∂4v(y)

∂y4
, Γk(y)

]
y

. (3.17)

In this system, α0 is the fundamental wavenumber in the x-direction, defined as 2π/L,
and the β coefficients are defined in terms of the following scalar products, where the
Γ (y) are the basis functions in y:

β
j
mk

4
=

[
∂jΓm(y)

∂yj
, Γk(y)

]
y

, j = 0 . . . 4, (3.18)

β0+
mk

4
= [U(y)Γm(y), Γk(y)]y , (3.19)

β0−
mk

4
=

[
d2U(y)

dy2
Γm(y), Γk(y)

]
y

, (3.20)
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β2+
mk

4
=

[
U(y)

∂2Γm(y)

∂y2
, Γk(y)

]
y

. (3.21)

3.3.2. Transformation to state-space form

We may visualize (3.15) in block matrix form as


M−N 0 · · · 0

0 M−N+1 0 0

0 0
. . . 0

0 0 0 MN




d~al=−N
dt

d~al=−N+1

dt
...

d~al=N
dt



=


K−N 0 · · · 0

0 K−N+1 0 0

0 0
. . . 0

0 0 0 KN




~al=−N
~al=−N+1

...
~al=N

+
[
Υ1 Υ2

] [ q(t)
dq(t)

dt

]
(3.22)

where ~al=p denotes a column vector of all alk coefficients whose first index, l, is the
value p. In compact notation,

M
da

dt
= Ka+

[
Υ1 Υ2

] [ q(t)
dq(t)

dt

]
. (3.23)

Assuming non-singularity of the M matrix, we may invert to obtain

da

dt
= M−1Ka+

[
M−1Υ1 M−1Υ2

] [ q(t)
dq(t)

dt

]
(3.24)

where a, K , Υ1 and Υ2 are all complex. By expanding in terms of real and imaginary
parts, we obtain

daR
dt

+ i
daI
dt

= M−1KRaR + iM−1KIaR + iM−1KRaI −M−1KIaI

+M−1Υ1Rq(t) + iM−1Υ1Iq(t) +M−1Υ2R

dq(t)

dt
+ iM−1Υ2I

dq(t)

dt
. (3.25)

where the subscript R or I indicates real or imaginary parts. Define

p̃
4
=

 aR
aI
q(t)

 . (3.26)

Then the state space system is

dp̃

dt
=

 M−1KR −M−1KI M−1Υ1R

M−1KI M−1KR M−1Υ1I

0 0 0

 p̃ +

 M−1Υ2R

M−1Υ2I

1

 dq(t)

dt
(3.27)

We write (3.27) as

dp̃

dt
= Ap̃ + B

dq(t)

dt

4
= Ap̃ + Bu(t) (3.28)
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where the input to the system is dq(t)/dt. Note since q(t) in (2.12) is related to
physical blowing/suction, it is important to keep in mind that the input to this model
is the derivative of q(t). In physical terms, any input derived from this model will
be in terms of dq(t)/dt and therefore must be integrated before it can be applied as
physical blowing/suction.

3.3.3. Measurement equations

By observing (2.30) and using the assumed solution form (3.12)

z(xi, y = −1, t) =
∂2ψ(xi, y = −1, t)

∂y2
=
∂2φ

∂y2
+ q(t)

∂2f(y = −1)

∂y2
w(xi)

=

N∑
n=−N

M∑
m=0

anm(t)Pn(xi)
∂2Γm(y = −1)

∂y2
+ q(t)

∂2f(y = −1)

∂y2
w(xi) + ρ(t, xi, y = −1)

(3.29)

where ρ(t, xi, y = −1), the residual component of streamwise shear due to the truncated
expansion, is assumed to be negligible compared to the two other terms. The second
term on the right-hand side of (3.29) is made up of the known input terms (2.12).
Denote

D
4
=
∂2f(y = −1)

∂y2
w(xi). (3.30)

By pulling out the complex time coefficients and denoting them as the vector a as
above we may construct a complex observation matrix, O

z(xi, y = −1, t) = Oa+ Dq(t). (3.31)

Finally, by creating p̃ by stacking the real and imaginary parts of a, as well as q(t),
we may construct an observation equation in state-variable form[

zR(xi, y = −1, t)
zI (xi, y = −1, t)

]
=

[
OR −OI D
OI OR 0

]
p̃. (3.32)

Since we may measure only real output (shear), we are left with only the top half of
the observation matrix,

zR(xi, y = −1, t) =
[
OR −OI D

]
p̃. (3.33)

In order to describe the system in traditional control terms, define

C
4
=
[
OR −OI D

]
. (3.34)

Then,

zR(xi, y = −1, t) = Cp̃ (3.35)

3.3.4. Initial conditions

We have not accounted for the initial value (2.11) in our boundary value problem.
We may account for the initial condition by assuming it can be written as a series
expansion in terms of Pn(x) and Γm(y). Then

φ(x, y, t = 0) = ψ(x, y, t = 0)− s(t = 0)f(y)w(x) = g(x, y)− s(t = 0)f(y)w(x)

=

N∑
n=−N

M∑
m=0

bnmPn(x)Γm(y) (3.36)
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where bnm are assumed known. Then

a(t = 0) = b. (3.37)

Since a and b are both complex, stack the real and imaginary components to arrive
at an initial condition on p̃:

p̃(t = 0) =

 bR
bI

q(t = 0)

 . (3.38)

We have now defined the system completely in the state-variable form of (3.7), (3.9)
where A and B are given in (3.28), C is given in (3.35), and the initial condition is
(3.38). Although we have shown the state-space formulation using a single input and a
single output, we may formulate the multiple input/multiple output case similarly. In
that case, the multiple input functions are represented as a sum of separable functions
in (2.12) and multiple outputs are represented as a vector whose components are of
the form (3.35). It should be noted that in the multiple input case, it is important for
physical implementation that for any finite stretch in the x-direction, only one of the
multiple input functions is non-zero.

4. Infinite-dimensional nature of the channel problem and effect on
actuator design

In a system described by partial–differential equations, such as the channel flow
problem, no finite-dimensional model will capture all the dynamics of the system.
Such a system is called infinite-dimensional. By examining the Galerkin approximate
solution (3.12), we see that the approximate solution can converge only as N,M →∞.
This would result in an infinite number of ordinary differential equations. Each n
value included in the approximate solution is referred to as adding an additional
wavenumber in the dynamic model. Even for just one wavenumber, n = N (say),
we see the assumed Galerkin solution requires an infinite number of terms in the
y-direction,

φa(x, y, t)
4
=

M→∞∑
m=0

aNm(t)PN(x)Γm(y). (4.1)

Interestingly, by examining the structure of the A matrix in the resulting state-space
model, we see that the dynamics associated with each individual wavenumber are
decoupled from the others. This is characterized by a block diagonal form of the A
matrix, (4.2). As a result, we may separate the problem of determining system poles
into a set of smaller problems that include only one wavenumber at a time:

A =


[A(n=1)] 0 · · · ∞

0 [A(n=2)] 0 0

0 0
. . . 0

∞ 0 0 [A(n=∞)]

 . (4.2)

Indeed, the eigenvalues (poles) of the entire A matrix are simply the eigenvalues
(poles) of each smaller A matrix block. Offsetting this computational advantage,
however, is the fact that the locations of the zeros are not decoupled by wavenumber.
Therefore, even though the poles of the system can be calculated separately using
only one wavenumber in a particular computation, the zeros of the system force all
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the wavenumbers in the model to be considered together. This can easily be seen
from an examination of the transfer functions associated with just two wavenumbers.
Consider two transfer functions obtained by using two distinct wavenumbers and the
same input, u(t), and output, z(t):

H(n=1) =
N(n=1)(s)

D(n=1)(s)
, H(n=2) =

N(n=2)(s)

D(n=2)(s)
. (4.3)

The roots of N(s) are the zeros and the roots of D(s) are the poles. In terms of input
and output,

z = H(n=1)u, z = H(n=2)u. (4.4)

Considered together, however,

z =
[
H(n=1) +H(n=2)

]
u =

[
D(n=2)(s)N(n=1)(s) + D(n=1)(s)N(n=2)(s)

D(n=1)(s)D(n=2)(s)

]
u. (4.5)

The poles of the new, combined transfer function are clearly those of each model
separately. The zeros, however, are the roots of a completely new polynomial
D(n=2)(s)N(n=1)(s) + D(n=1)(s)N(n=2)(s), which, in general, has little to do with either of
the original numerators.

We have seen that an infinite expansion is needed to fully model the channel system.
Since in practice an infinite expansion cannot be used to create a state-space model, we
will always have some part of the system dynamics that is unmodelled. Furthermore,
we have seen that the A (dynamic) matrix may be decoupled by wavenumber.

Consider a partition of the state-space model as

dx

dt
=

 dxm
dt

dxu
dt

 =

[
Am 0
0 Au

] [
xm
xu

]
+

[
Bm
Bu

]
u(t), (4.6)

z =
[
Cm Cu

]
x, (4.7)

where the subscripts m and u represent the modelled and unmodelled parts of the
system. In the channel flow problem, the unmodelled part is meant to denote only
the dynamics of wavenumbers left out of the finite-dimensional model. Note that
both Au and Am are of infinite dimension; Au because of the infinite number of
wavenumbers left out of the reduced-order model and Am because of the infinite
number of expansion functions needed in y for each of the finite number of modelled
wavenumbers. One way to avoid considering unmodelled wavenumber dynamics is
to ensure that the control input, u(t), has no effect whatsoever on the unmodelled
wavenumber dynamics. In terms of the state-space model (4.6), this is equivalent to
rendering Bu = 0. This is known as making the unmodelled wavenumber dynamics
uncontrollable. By examining (3.27), we see that the B matrix is formed from terms
of S1

lk in (3.16). If w(x) in (3.16) is such that S1
lk = 0, then those components of the

B matrix are zero. Equivalently, we must ensure that the projection of w(x) onto the
unmodelled wavenumbers is zero. Owing to the orthogonality of Fourier components,
we select w(x) to be made up of modelled Fourier components only.

5. Single-wavenumber channel model
Consider the channel model shown in figure 1. The total non-dimensional length of

the channel, L, is 4π. In this case, the fundamental wavenumber, α0 = 0.5. Only one
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1.00

y

x

L = 4p

2p–2p 0

–dw(x)/dx = –cos(x) Shear sensor at x = +p/2

Figure 1. System model for Poiseuille flow. Input is applied along the bottom plate as
w(x) = sin(x) and shear is measured at x = π/2 with Re = 10 000 and α = 1.0.

wavenumber is included in the model, corresponding to α = lα0 = 1.00. The Reynolds
number is chosen as Re = 10 000. Input is distributed along the bottom plate
with a sinusoidal weighting function in order to render the unmodelled wavenumber
dynamics uncontrollable as described in §4. In terms of the input function, w(x), see
(2.12)

w(x) = sin(x). (5.1)

Note that the physical blowing/suction, v̂(x, y, t), takes the form

v̂(x, y, t) = −q(t)
∂w(x)

∂x
f(y = −1) = −q(t) cos(x)f(y = −1) (5.2)

see (2.21). This type of input may be achieved in practice by a large number of
independently controllable actuators that are distributed along the lower channel
wall. The f(y) function is chosen as in (2.20). The sensor location is x = +1

2
π. In

order to visualize the control-theoretic model, the system A, B , and C matrices are
transformed to transfer function form, H(s). Figure 2 shows the locations of the poles
and zeros in the s-plane for the single-wavenumber model.

5.1. Relation of poles to eigenvalues of the Orr–Sommerfeld equation

Poles of the transfer function or, equivalently, eigenvalues of the A matrix are closely
related to the eigenvalues of the Orr–Sommerfeld equation. Assume a solution of
(2.6) of the form

ψ(x, y, t)
4
= β(y)eiαxe−iαct. (5.3)

By substituting into (2.6), we obtain the familiar Orr-Sommerfeld equation in the
normal-mode form,

[U(y)− c]
(
∂2β(y)

∂y2
− α2β(y)

)
− ∂2U(y)

∂y2
β(y) =

1

iαRe

[
∂4β(y)

∂y4
− 2α2 ∂

2β(y)

∂y2
+ α4β(y)

]
.

(5.4)

Here, the Reynolds number, Re, is known; the wavenumber, α, is assumed real and
known; the complex wave speed, c, is the eigenvalue of the problem; and the function
β(y) is the eigenvector of the problem. Stability of a flow for a given value of Re
and α is determined by the imaginary part of c. If the imaginary part is positive, the
solution (5.3) becomes an unbounded exponential and flow is unstable. Poles of the
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Figure 2. Pole (×) and zero (o) configuration for the system model of figure 1. Note that all poles
and zeros appear in complex-conjugate pairs. Each pair of complex-conjugate poles represents one
mode of the system. One pair of poles is to the right of the imaginary axis. This indicates the system
has one unstable mode. Note that the single pole at the origin represents a built-in integrator due
to u(t) = dq(t)/dt. Channel model: Re = 10 000, shear sensor at π/2,w(x) = sin(x), L = 4π, α = 1.0.

transfer function in the Laplace domain at s = pi correspond to solutions in the time
domain of epit. As a result, we observe that poles of the transfer function are related
to eigenvalues of the Orr–Sommerfeld equation as

pi ≡ −iαc. (5.5)

In order to validate our linear code, we compare our poles to eigenvalues produced in
Orszag (1971). Orszag (1971) obtained Orr-Sommerfeld eigenvalues for the channel
problem with α = 1.00 and Re = 10 000. He reported only one slightly unstable
eigenvalue at s = 0.00373967 + i0.23752649 (c = 0.23752649 − i0.00373967). The
eigenvalue is seen as unstable by its positive real part. We obtained identical results
including the one unstable mode at

s = 0.00373967∓ i0.23752649.

All other stable modes obtained in the present study are identical to those reported
in Orszag (1971). The goal of our control system will be to move these unstable poles
into the stable half of the s-plane or, equivalently, make sure the controlled-system
poles all have real parts less than zero.

5.2. Verification of model zeros

Verification of the system zeros is more difficult due to the fact that no published
results exist to our knowledge. We use the channel code simulation used in Kim,
Moin & Moser (1987) to verify our zeros. This code is a spectral channel flow code
which uses periodic boundary conditions. Consider the transfer function model (3.2)
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Figure 3. Output from the Navier–Stokes simulation with input applied as u(t) = e+0.317557t.
Although an unbounded input is applied, near zero output is observed at sensor location π/2 (solid
curve). Sensor location 0 (dashed curve) and sensor location π (dash-dot curve) do not show zero
output. Channel model: Re = 10 000, shear sensor at π/2,w(x) = sin(x), L = 4π, α = 1.0.

with J = 1 and I = 1:

H(s) =
Z(s)

U(s)
=

(s− ζ1)

(s− p1)
. (5.6)

In the Laplace domain,

sZ(s)− p1Z(s) = sU(s)− ζ1U(s). (5.7)

Assuming zero initial conditions and transforming into the time domain, (5.7) becomes

dz(t)

dt
− p1z(t) =

du(t)

dt
− ζ1u(t) (5.8)

where z(t) is the output function and u(t) is the input function. If the input is taken
as

u(t) = eζ1t (5.9)

then the right-hand side of (5.8) becomes zero and the system behaves as if zero
input has been applied. As a result, z(t) remains zero for all time. Therefore, we may
verify zeros of the system by applying non-zero input in special ways and observing
zero output. Note from figure 2 that for sensor location x = + 1

2
π, one zero exists

in the right half plane at s = +0.317557 + 0i. This represents an ideal zero to check
as this corresponds to an unbounded, unstable input. Figure 3 shows output from
the Navier–Stokes simulation with input u(t) = dq(t)/dt = e+0.317557t. Note that even
though an unbounded, exponentially growing input is applied to the system, near
zero output is observed at the sensor, thus verifying that ζ1 is indeed a zero of the
system. This is contrasted with measurements at different sensor locations that grow
rapidly. With a sensor at a different location, the zeros of the system change position
so zero output is no longer expected for this particular input. Absolute zero is not
observed at sensor location x = 1

2
π due to slight numerical inaccuracies in the model.

6. Feedback control and stabilization
At this point, with the construction of a valid state-variable model, any number of

control schemes may be employed to stabilize the system. A general control system is
shown in figure 4. The output of the system is fed into a controller. The output of the
controller is then used to create an input to the system. The design of a controller that
achieves certain system characteristics is the goal of control system design. Several
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modern control techniques may be applied that require a state-variable model. In this
paper, the primary goal will be system stability. For this purpose, a simple constant
gain feedback with integral compensator will be shown to be sufficient.

6.1. Constant gain feedback with integral compensator

Figure 5 shows an integral compensator feedback control scheme. K is referred to as
the gain of the feedback. The output of the system, in this case shear, is multiplied
by a feedback gain, integrated in time, and then fed back as blowing and suction at
the input. Note that the integrator is required because of the structure of the input
given in (3.27), i.e. the input is taken as the derivative of suction/blowing. The signal,
r(t), is called the reference signal. It is used to define the desired output. In our case,
we would like the shear output, z(xi, y = −1, t), to be zero. Therefore, we set r(t) to
zero. Then

u(t)
4
=
∂q(t)

∂t
= −Kz(xi, y = −1, t). (6.1)

Therefore, assuming q(0) = 0,

q(t) = −K
∫ t

0

z(xi, y = −1, τ)dτ (6.2)

and by observing (2.21), we may describe physical blowing and suction at the bound-
ary:

v̂(x, y = −1, t) = −q(t)
∂w(x)

∂x
f(y = −1) = K cos(x)

∫ t

0

z(xi, y = −1, τ)dτ (6.3)

As defined earlier,

H(s)
4
=
L[z(t)]

L[u(t)]
=
Z(s)

U(s)
. (6.4)

Therefore,

Z(s) = H(s)U(s). (6.5)

In the absence of feedback, one mode is unstable. Also, one pole exists at the origin
for the integrator. Consider a new transfer function from the reference input, r(t), to
the output, z(t), in the presence of feedback:

u(t) = r(t)−Kz(t). (6.6)

By taking the Laplace transform of (6.6),

U(s) = R(s)−KZ(s). (6.7)

Then

Z(s) = H(s)[R(s)−KZ(s)]. (6.8)

Finally,

Z(s)

R(s)
=

H(s)

1−KH(s)
. (6.9)

The new poles of the feedback system are defined by

1−KH(s) = 0. (6.10)

As K gets larger and larger, it is clear that the poles of the new system tend toward
the zeros of H(s). In this way, modes of the system can sometimes be changed to
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System

Controller

Output

r(t) u(t) z(t)

Figure 4. Feedback control. The output of the system is fed into a controller and then to the input.

Integrator Blowing/
suction

Feedback gain

Shear
Channel system

r(t) u(t)
∫(.)dt

v(x, y = –1, t)
v(xi, y = –1, t)

–K

Figure 5. Feedback control for channel system. The output of the system is multiplied by a
feedback gain, integrated in time, and then fed back at the input. The reference signal, r(t),
equals 0.

form a stable system (Franklin et al. 1988). Unstable modes that appear as poles
on the right hand side of the complex s-plane and ‘marginally stable’ poles on the
Im(s)-axis are drawn to the left-hand side by applying feedback.

6.2. Sensor placement

We have seen that, by applying feedback, poles of the system will eventually be drawn
to zeros of the system. In the channel flow system of figure 2, any feedback will
cause either the pole at the origin (integrator pole) or the unstable mode poles to be
drawn to the zero on the real axis in the right-hand plane, thus making the system
unstable to a greater degree. Therefore, finding a transfer function that has all zeros
in the left-hand plane becomes an important objective. The poles of the system are
independent of sensing or actuation. However, the zeros of the system are dependent
on both the type and location of sensing and the type and location of actuation.
Figure 6 shows the pole/zero configuration for the channel model with the shear
sensor at three different locations. Only the top half of the s-plane is shown since
the bottom half is a mirror image projected across the real axis as shown in figure 2.
The poles of all the models are in the same location as expected. However, the zeros
are different in all three cases. In figures 6(a) and 6(b), we observe a lone zero in
the right-hand s-plane. However, when the sensor is placed at x = +π, figure 6(c)
shows all zeros in the left-hand plane. In fact, there is a region around x = π that
results in all zeros in the left-hand plane. By placing a shear sensor at x = π, simple
feedback with integral compensation will allow stabilization with the proper value
of gain, K . In the case of sensor locations that result in right-hand-plane, so called
‘non-minimum phase’, zeros stabilization is still possible. However, more complex
controllers (Bryson & Ho 1975; Ogata 1990) must be designed that are beyond the
scope of this paper.

6.3. Root locus analysis and numerical simulation

One way to visualize how system poles will change as the feedback gain, K , changes
is to construct a root locus plot. This is a plot of all poles of a system as the feedback
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Figure 6. Pole (×)/zero (o) configuration. Channel model: Re = 10 000, w(x) = sin(x), L = 4π,
α = 1.0. Only the top half of the s-plane is shown. Shear sensor at (a) π/4 (b) 3π/4, (c) π.

gain varies from K = 0 to K = ∞. Figure 7 shows such a plot for the system shown in
figure 6(c). When K reaches 0.1, all feedback system poles (closed-loop-poles) lie on
the left-hand plane and no instabilities exist in the new feedback system. Numerical
results obtained from the Navier–Stokes simulation for the new feedback controlled
system are shown in figure 8. The computation is carried out without feedback until
t = 50, after which the feedback is turned on. We see that the growing instability is
quickly suppressed. At the instant the controller is turned on, the simulation shows
a high transient response due to the non-continuous nature of the input at that time
instant. In terms of the state space defined in (3.28), (3.35),

dp̃

dt
= Ap̃ + Bu(t), (6.11)

z(xi, y = −1, t) = Cp̃, (6.12)

u(t) = −Kz(xi, y = −1, t). (6.13)

Then, in a closed loop,

dp̃

dt
= Ap̃ − B(Kz(xi, y = −1, t)) (6.14)

= Ap̃ − BKCp̃ = (A− BKC )p̃ (6.15)
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Figure 7. Root locus plot for channel system with input as in the channel model (figure 1) and
shear output at x = π. The poles start at the open-loop poles shown with ×’s. As K increases, they
start to move toward the location of the system zeros, shown as o’s. The pole at position s =(0,0)
moves directly to the left. The unstable pole moves quickly to a position just to the left of the
imaginary axis. Near 0.7 < y < 1.0, −0.6 < x < −0.4, we see a pole moving towards a zero that
is out of the range of this figure. Channel model: Re = 10 000, shear sensor at π, w(x) = sin(x),
L = 4π, α = 1.0. Only the top half of the s-plane is shown.
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Figure 8. Navier–Stokes simulation of feedback control. Shear is multiplied by a feedback gain,
integrated, and fed back into the input. Channel model: Re = 10 000, feedback shear sensor at π,
w(x) = sin(x), L = 4π, α = 1.0. Curve 1 (solid) shows shear at location π; curve 2 (dot-dash) shows
shear at location π/2.

The solution to this equation is

p̃(t) = eAt−BKC tp̃(t = 0). (6.16)

This solution will approach zero as t→∞ since the eigenvalues of A−BKC (closed-
loop poles) are all stable.

6.4. Robustness in the presence of Reynolds number uncertainty

A major advantage of feedback control systems is their robustness to system un-
certainty. From a practical point of view, Reynolds numbers may not be known
exactly or may change frequently as in the flight of an airplane, for example.
Figure 9 shows the open-loop pole/zero configurations for systems with varying
Reynolds numbers. Note that these systems start with all zeros in the left-hand
s-plane. A root locus analysis shows that a feedback system with K = 0.1 stabilizes
both systems. Indeed, a feedback gain of K = 0.1 stabilizes systems for a wide
range of Reynolds numbers from Re = 1000 to Re = 40 000. Figure 10 shows
the least-stable pole in both the controlled and uncontrolled systems for several
Reynolds numbers. Recall that a pole with real part less than zero is stable. We
see near Re = 5772, an unstable pole appears in the open-loop (uncontrolled)
system. Unstable eigenvalues continue to exist in the open-loop system until
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Figure 9. Pole (×)/zero (o) configuration. Channel model: shear sensor at π, w(x) = sin(x),
L = 4π, α = 1.0. Only the top half of the s-plane is shown. (a) Re = 7500, (b) Re = 12 500.
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Figure 10. Real part of least-stable pole for open-loop (solid line) and closed-loop (dashed line)
channel system with 1000 6 Re 6 40 000. Shear sensor at π, w(x) = sin(x), L = 4π, α = 1.0. Data
points are shown as ×’s.

30 000 6 Re 6 35 000. An identical feedback controller, with gain K = 0.1,
however, stabilizes the system for Reynolds numbers in the range 1000 6 Re 6
40 000. Clearly, the feedback controller is extremely robust to changes in Reynolds
number.
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7. Unobservable transient response as a path of bypass transition
Recently, some authors (Trefethen et al. 1993; Butler & Farrell 1992; Farrell 1988;

Henningson 1994) have suggested a possible path of bypass transition in Poiseuille
flow that is caused by high transient response due to the non-self-adjointness of the
evolution matrix. This high-transient behaviour is due to the non-orthogonality of the
eigenmodes and not caused by any single mode, but rather a combination of many
modes. In this section, we suggest a possible different form of bypass transition in a
controlled system due to a single mode. In the presence of any type of control, it is
possible that energy from an input is fed into a mode such that the mode is reinforced
during the transient period before it eventually dies out. During the transient period,
however, the mode may grow to an amplitude large enough to trigger nonlinear
effects that induce transition to turbulence. This may be a possible path of bypass
transition in a controlled system.

Single modes may be characterized in linear systems in terms of modal controlla-
bility and modal observability. Modal controllability implies that a particular mode
may be affected by the actuators chosen (blowing/suction in our case). Modal ob-
servability implies that a particular mode may be measured by the sensors chosen
(shear in our case). A particular mode may be non-observable, non-controllable, or
both. This will be seen in §§7.1 and 7.2. If high-transient modes are controllable and
observable, control theory may be used to suppress them. However, if high-transient
modes are unobservable, the high transients will never be seen and feedback control
cannot be used to suppress them.

7.1. Modal canonical form

The state-space formulation provides an excellent framework for assessing the rein-
forcement of each mode individually. Consider an n-dimensional state space with
scalar input and output

dx

dt
= Ax+ Bu, (7.1)

z = Cx. (7.2)

We may perform a similarity transformation on the system to produce a new state-
space representation with the same input–output relationship, but with a different
interpretation of the state variables. Let

P
4
=
[
ν1 ν2 . . . νn

]
(7.3)

where νj is the jth eigenvector of the A matrix and n is the dimension of the A matrix.
A new representation is constructed as (Grace et al. 1992; Kailath 1980)

dx̃

dt
= P−1APx̃+ P−1Bu, (7.4)

z = CPx̃ (7.5)

where x̃
4
= P−1x. The new representation is written as

dx̃

dt
= Ãx̃+ B̃u, (7.6)

z = C̃ x̃ (7.7)

where the real eigenvalues of the original A matrix appear on the diagonal of Ã and
the complex eigenvalues appear in a 2 × 2 block on the diagonal of Ã. For an A
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matrix with eigenvalues (α1, σ ± jω, α2), the Ã matrix is

Ã =

 α1 0 0 0
0 σ ω 0
0 −ω σ 0
0 0 0 α2

 . (7.8)

In this form, each state-variable pair represents a mode of the system. Furthermore,
the modes are block decoupled so that each mode is represented by the 2× 2 system dx̃1

dt
dx̃2

dt

 =

[
σ ω
−ω σ

] [
x̃1

x̃2

]
+

[
b̃1

b̃2

]
u, (7.9)

z1 =
[
c̃1 c̃2

] [ x̃1

x̃2

]
, (7.10)

where ω, σ, b̃1, b̃2, c̃1, and c̃2 are all scalars. This is known as the modal canonical
state-space form. All modes can be monitored directly for high-transient reinforcement
in this form.

7.2. Modal observability and controllability

It is easy to see that if b̃1 and b̃2 are zero, no input can affect the mode and the
mode is uncontrollable. Similarly, if c̃1 and c̃2 are zero, then the motion of x̃1 and
x̃2 cannot be measured at the output, z1, and the mode is unobservable. In terms
of stabilization, an uncontrollable mode is not problematic as long as it is stable.
However, if an unstable mode is uncontrollable, nothing can be done to stabilize it.
Observability may be a problem even if modes are stable. If an unobservable mode
is highly amplified by control energy, no attempt could be made to suppress it since
it would not be observed at the output. In terms of poles and zeros, uncontrollable
or unobservable modes both show up as pole/zero cancellations in the complex s-
plane. As can be seen from figure 2, many poles and zeros for the channel system
lie on top of each other, indicating that certain modes in the system are either
uncontrollable, unobservable, or both. Although a mode may not be physically
observable at the output, the modal canonical formulation allows us to numerically
observe the state evolution of each mode directly. In this way, we may assess the risk
of highly amplified modes triggering bypass transition. This is done for the controlled
system simulated in figure 8. The uncontrolled linear system is simulated with an
initial condition for 200 time steps at which time a feedback controller with gain
K = 0.1 is turned on. Figure 11 shows the state evolution of the modes with poles
at s = −0.1474± 0.8514i and s = −0.3252± 0.6361i as well as the state evolution of
the one unstable mode.† In addition, figure 11(a) shows the shear measurement at
the output. We see that the unstable mode dies out quickly as soon as the feedback
is turned on. In addition, the mode at s = −0.1474± 0.8514i gains almost no energy
after the feedback is activated. This indicates that the mode is not a bypass mode.
The mode at s = −0.3252± 0.6361i is seen to gain a lot of energy after the controller
is started. Indeed, the amplitude of the transient response is nearly twice that of
the unstable mode. This represents a possible bypass mode since such an amplitude

† Note that amplitudes shown as a result of linear system simulations should only be used for
comparison with each other since the linear model has been scaled to unity open-loop feedforward
gain, i.e. H(s) = κZ(s)/U(s) where κ = 1.
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Figure 11. Linear model state evolution of system modes with control applied at t = 200: (a)
measured shear, (b) the state evolution of the unstable mode, (c) the state evolution of the mode
at s = −0.1474 + 0.8514i, (d) the state evolution of the mode at s = −0.3252 + 0.6361i. Channel
model: Re = 10 000, shear sensor at π, w(x) = sin(x), L = 4π, α = 1.0.

may force the system into the nonlinear region where transition to turbulence may be
triggered. Furthermore, the high energy nature of the mode cannot be observed at the
shear sensor since this mode is unobservable. This can be seen from the plot of the
shear sensor output. Modal un-observability is also suggested by noting the relatively
low c̃1 and c̃2 values of 0.5155, −0.1131 compared to the c̃1 and c̃2 values of −162.85,
234.66 for the unstable mode which is clearly seen at the output. Fortunately, the high
energy nature of the mode does not lead to a bypass transition in this case. This is
verified by the Navier–Stokes simulation in figure 8, which shows no nonlinear effects.
If the instability were allowed to grow to a higher amplitude before the controller
was applied, however, the highly amplified mode in the transient response might have
triggered nonlinear effects.

8. Multiple instability control
Although most work has focused on suppression of single instabilities, more realistic

models should include multiple wavenumbers. Indeed, for a given Reynolds number,
an infinite number of wavenumbers exist. Each wavenumber contributes its own poles
and zeros to the control-theoretic model. Consider a model with non-dimensional
channel length 20π, where input is applied as w(x) = sin(x) + sin(0.9x). In this model,
wavenumbers of 0.9 and 1.0 are included. Both wavenumbers lead to unstable modes.
The pole/zero configuration of this new two-wavenumber model with shear sensor
at π is shown in figure 12(a). Note that in comparison to the one-wavenumber
model, more poles and zeros exist. The original one-wavenumber model contained
one ‘fork’ structure of poles, while the two-wavenumber model contains two ‘fork’
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Figure 12. (a) Pole (×) and zero (o) configuration of channel system of length 20π, including
wavenumbers of 0.90 and 1.00. Re = 10 000, shear sensor at π, w(x) = sin(x) + sin(0.9x). Only the
top half of the s-plane is shown. (b) Same as (a) but showing closed-loop poles after feedback with
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Figure 13. Navier–Stokes simulation of channel system of length 20π, including wavenumbers of
0.90 and 1.00. Re = 10 000, feedback shear sensor at π, w(x) = sin(x) + sin(0.9x), feedback gain
K = 0.1. Curve 1 (solid) shows shear at location π; curve 2 (dash-dot) shows shear at location 2π.

structures. It can be visualized that in a model with several wavenumbers, several
‘forks’ will stack on top of each other in the s-plane. Near s = i0.2 are two
unstable poles in the right-hand plane that represent the two unstable modes in the
system. As seen before, all zeros lie in the left hand s-plane. Figure 12(b) shows
the closed-loop poles after feedback with gain K = 0.1. Results from the Navier–
Stokes simulation are shown in figure 13. The computation is carried out without
feedback until t = 200. A combination of two growing waves is seen at the shear
sensor. At t = 200, feedback with integral compensation is applied and the system is
stabilized.
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9. Effect of linear controllers on two-dimensional finite-amplitude
disturbances

The critical Reynolds number above which linear instabilities exist in plane
Poiseuille flow is Re ≈ 5772. Below this Reynolds number, Poiseuille flow is linearly
stable. However, transition from laminar to turbulent flow occurs in experiments
at much lower Reynolds numbers, typically around Re = 1000. Moreover, even
for super-critical Reynolds number flows, linear instabilities predict extremely slow
growth rates. In practice, transition occurs orders of magnitude more quickly. There-
fore, linear stability alone does not dictate transition. Transition to turbulence is
generally accepted to be a nonlinear three-dimensional phenomenon. In previous sec-
tions, we constructed two-dimensional linear controllers based on the two-dimensional
linearized Navier–Stokes equations. By applying these controllers to plane Poiseuille
flow with infinitesimal two-dimensional disturbances, we saw that we may linearly
stabilize the system so that the flow could no longer support those disturbances. If
we apply our linear controllers to flows that contain finite-amplitude disturbances, we
can no longer use linear analysis to describe the flow dynamics as nonlinear terms
become relevant. However, the application of a controller based on linear analysis
does change the nonlinear system.

Many authors (Orszag & Patera 1983; Bayly, Orszag & Herbert 1988) have explored
the effect of two-dimensional finite-amplitude disturbances on three-dimensional in-
finitesimal disturbances in plane Poiseuille flow. Above Re ≈ 2900, for two dimensions,
stable non-attenuating finite-amplitude equilibria exist in plane Poiseuille flow. Below
Re ≈ 2900, non-decaying, finite-amplitude equilibria do not exist. However, in flows
with 1000 6 Re 6 2900, the timescale for decay is so large that the flow may be
considered in ‘quasi-equilibrium’. It has been shown that in the presence of such
two-dimensional finite-amplitude disturbances, infinitesimal three-dimensional distur-
bances are highly unstable and may cause transition in shear flows. Figure 14 shows
the energy of a single-wavenumber, two-dimensional finite-amplitude disturbance
(α = 1.0) and a single-wavenumber-pair, three-dimensional infinitesimal disturbance
(α = 1.0, β = ∓1.0) obtained through direct numerical simulation at Re = 3000. The
maximum amplitude of the two-dimensional finite-amplitude disturbance is 0.1Uc.
At this Reynolds number, wavenumber, and initial energy level, we see the two-
dimensional finite-amplitude disturbance decaying slowly. The three-dimensional dis-
turbance, on the other hand, is seen to rapidly gain energy. Orszag & Patera (1983)
show that the two-dimensional instability acts as a mediator for transfer of energy
from the mean flow to the three-dimensional disturbance, but does not directly provide
energy. The growth rate of the three-dimensional disturbance is orders of magnitude
larger than that of the Orr–Sommerfeld instabilities.

Orszag & Patera show, in the case where Re 6 1000, that the attenuation of
finite-amplitude two-dimensional disturbances is large enough that three-dimensional
disturbances do not become unstable. The fact that high attenuation of the two-
dimensional finite-amplitude disturbance prevented three-dimensional instability be-
low Re ≈ 1000 suggests that if controllers can be created that speed up the attenuation
of the finite-amplitude two-dimensional disturbance for flows with Reynolds num-
bers greater than 1000, three-dimensional instability may be eliminated. We have
seen in §6 that linear controllers did stabilize infinitesimal two-dimensional distur-
bances. Figure 15 shows the effects of the linear controller of §6 when applied
to a system with the same finite-amplitude two-dimensional disturbance and in-
finitesimal three-dimensional disturbance shown in figure 14. The linear controller
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Figure 14. Energy of a two-dimensional finite-amplitude disturbance (α = 1.0) and a
three-dimensional infinitesimal disturbance (α = 1.0, β = ∓1.0) for Re = 3000. Solid line rep-
resents the total energy of the two-dimensional finite-amplitude disturbance and the dotted line
represents that of the three-dimensional infinitesimal disturbance.
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Figure 15. Effect of linear controller when applied at t = 15 for Re = 3000. The top two lines
show the two-dimensional finite-amplitude disturbance without (solid) and with (dash-dot) linear
control. We see at t = 15 that the controlled two-dimensional finite-amplitude disturbance is highly
damped. The bottom two lines show the infinitesimal three-dimensional disturbance without (dot)
and with (dashed) linear control. That without controller gains energy quickly, while that with
controller quickly fails to gain energy.
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dramatically increased the attenuation of the finite-amplitude two-dimensional dis-
turbance. As a result, the infinitesimal three-dimensional disturbance was rendered
stable. Clearly, the linear controller not only stabilized the two-dimensional lin-
ear system, but also had a stabilizing effect on the three-dimensional nonlinear
system. These results show the promise of linear controllers even in nonlinear sys-
tems.

10. Conclusions
In this paper, we have developed feedback controllers that linearly stabilize

plane Poiseuille flow. We used a Galerkin spectral method to generate state-space
models. Indeed, any (convergent) numerical method that reduces the governing par-
tial differential equations into a set of ordinary-differential equations may be used.
It is important to note, however, that the meaning of the state variables in the state-
space model changes as different numerical methods are employed. Even though
state variables may not have any specific physical meaning, some numerical meth-
ods may result in favourable divisions of system dynamics. In the plane Poiseuille
flow case, the spectral Galerkin method with the use of Fourier components in the
x-direction and combination-Chebyshev polynomials in the y-direction led to mod-
elled dynamics that were de-coupled by wavenumber. This led to a block diagonal
form of the A matrix. As a result, we were clearly able to describe modelled and
unmodelled dynamics in terms of wavenumber dynamics included and not included
in our finite-dimensional model. This also led us to the concept of using distributed
control to render certain wavenumbers ‘uncontrollable’. If other numerical methods
had been used, this concept would not have been so transparent. Furthermore,
plane Poiseuille flow can be linearly stabilized with simple feedback controllers if
sensors are placed at judicious locations. Both the position and the type of sensing
and actuation change the zeros of single-input/single-output models. In our case,
we have seen that certain shear sensor locations lead to ‘minimum-phase’ systems
and some locations lead to ‘non-minimum phase’ systems. Minimum-phase systems
are in general easier to control than non-minimum phase systems. As a result, we
were able to stabilize plane Poiseuille flow with a constant gain feedback, integral
compensator controller. In addition, the controller was extremely robust to a wide
range of Reynolds numbers. Also, we have shown that one danger of feedback
control is that the linear transient response of a controlled system can lead to high
amplitudes for a short period of time. If these amplitudes are high enough, it is
possible that they may invalidate the linear model and enhance nonlinear effects.
Furthermore, the high transients may not be observable at the output so that feed-
back control cannot be used to suppress them. Finally, we have shown that linear
controllers have a strong stabilizing effect on two-dimensional finite-amplitude dis-
turbances. As a result, three-dimensional secondary instabilities can be rendered
stable.
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